CARBON-13 NMR SPECTRA OF JUGLONE, NAPHTHAZARIN AND THEIR DERIVATIVES

Masaaki Kobayashi, Yoshihiro Terui, Kazuo Tori and Naoki Tsuji*

Shionogi Research Laboratory, Shionogi & Co., Ltd., Fukushima-ku, Osaka, 553 Japan

(Received in Japan 27 December 1975; received in UK for publication 15 January 1976)

A number of naturally occurring quinones have been reported.^{1,2} In the course of our chemical studies of microbial quinone antibiotics,² we have frequently encountered peri-hydroxy-<u>p</u>-naphthoquinone moieties. Carbon-13 NMR spectroscopy³ promises to be a powerful tool for determining structures and studying biosyntheses of this kind of antibiotic, if some fundamental ¹³C chemical-shift δ_{C} data on peri-hydroxy-<u>p</u>naphthoquinones are available together with values for the methylation and acetylation shifts.

We report here δ_{C} data for 1,4-naphthoquinone (1), vitamin K₃ (2), juglone (3), naphthazarin (6), and their methyl ethers and acetates (4, 5, 7-11). The ¹³C signals were assigned by using ¹H-noise,³ noise off-resonance,⁴ and single-frequency off-resonance³ decoupling techniques, with known chemical-shift rules including hydrogen bonding shift for a carbonyl group,³ by comparison of δ_{C} values from compound to compound, and by employing an NMR shift reagent,⁵ Yb(fod)₃, for 3 and 4, and deuteriation effects⁶ of peri-OH by an addition of D₂O for 7 and 9. Chemical-shift comparisons with those of <u>o</u>-hydroxyaceto-

phenone derivatives (12-14) were extremely useful. TABLE 1 summarizes the $\delta_{\rm C}$ data thus obtained. The additivity of substituent chemical-shifts (see

1: R = R' = R'' = H2: R = R' = H, R'' = Me3: R = OH, R' = R'' = H4: R = OMe, R' = R'' = H5: R = OAc, R' = R'' = H6: R = R' = OH, R'' = H7: R = OMe, R' = OH, R'' = H8: R = R' = OMe, R'' = H9: R = R' = OAc, R'' = H10: R = R' = OAc, R'' = H11: R = OMe, R' = OAc, R'' = H

619

Carbon No,	1	2	3	4	5	۵	Z	8	2	10	11
1	184.6	184.9	190.0	184.0	184.0 ^c	172.9	183.3	184.8	182.9	183.1	184.1
2	138.5	147.8	138.4	136.2	137.2	134.6	136.4	138.4	137.5	138.5	137.2
3	138.5	135.4	139.3	140.9	139.7	134.6	141.7	138.4	140.6	138.5	139.5
4	184.6	184.3	183.9	185.0	183.5 ^c	172.9	190.5	184.8	190.0	183.1	183.8
5	126.2	125.8 ^c	118.9	118.3 ^c	124.9	172.9	156.6 ^b	153.7	160.2 ^b	147.6	142.7
6	133.6	133.3	136.4	134.8	134.7	134.6	126.8	120.5	126.2	130.9	131.0
7	133.6	133.3	124.2	119.3°	129.6	134.6	123.6	120.5	133.3	130.9	119.3
8	126.2	126.2 ^c	161.2	159.9	149.2	172.9	154.0	153.7	142.9	147.6	157.8
9	131.7	131.9	114.8	120.3	123.3	111.9	117.5 ^c	120.9	121.8	124.4	120.4
10	131.7	131.9	131.5	134.4	133.4	111.9	114.8 ^c	120.9	114.8	124.4	124.5
OMe		16.3(2-Me)		56.6			56.9	57.0			56.8
COMe			-,		21.0				21.0	21.0	21.0
COMe					169.2				169.4	169.2	169.9

TABLE 1. ¹³C Chemical Shift Data, ^a δ_{C}

^a Natural-abundance ¹³C FT NMR spectra were recorded on a Varian NV-14 FT NMR spectrometer at 15.087 MHz using about 0.2-0.5 mmol cm⁻³ solutions in CDCl₃ and 8-mm spinning tubes; errors of $\delta_{\rm C}$ (from internal TMS) are about ±0.1. FT measurement conditions are as follows: spectral width, 3923 Hz; pulse flipping angle, 8°; acquisition time, 0.6 sec; number of data points, 4820. ^b An upfield shift of about -0.4 ppm was observed when D₂O was added to the CDCl₃ solution.⁶ ^c These assignments may be reversed in each column.

TABLE 2. ¹³C Substituent Chemical Shifts, $\Delta\delta$ in ppm^a, for <u>1</u>,

Substituent	C-1	C-2	C-3	C-4	C-5	Ċ-6	C-7	C-8	C-9	C-10
8-OH	+5.4	-0.1	+0.8	-0.7	-7.3	+2.8	~9.4	+35.0	-16.9	-0.2
8-OMe	+0.6	-2.3	+2.4	+0.4	-7.9 ^c	+1.2	-14.3 ^c	+33.7	-11.4	+2.7
	(-6.0	-2.2	+1.6	+1.1	-0.6 ^c	-1.6	-4.9 ^c	-1.3	+5.5	+2.5) ^b
8-OAc	-0.6 ^c	-1.3	+1.2	-1.1°	-1.3	+1.1	-4.0	+23.0	-8.4	+1.7
	(-6.0 ^c	-1.2	+0.4	-0.4°	+6.0	-1.7	+5.4	-12.0	+8.5	+1.9) ^b

^a Plus sign denotes a downfield shift. ^b Values in parentheses are the methylation or acetylation shifts. ^c These values should be changed if the signal assignments are reversed.

TABLE 2) holds fairly well except for δ_r , where a delocalized-electronic structure is dominant.⁷ It should

be noted that the shift reagent complexed preferentially to the 4-CO rather than the 1-CO in 3.

Some applications of the present results will be published later.

REFERENCES

- (1) R.H. Thomson, "Naturally Occurring Quinones," 2nd Ed., Academic Press, London (1971).
- (2) C.-K. Wat, "Microbial Quinones," in "Handbook of Microbiology. III. Microbial Products," Ed. A.I. Laskin and H.A. Lechevalier, CRC Press Inc., Cleveland, Ohio (1973).
- (3) J.B. Stothers, "Carbon-13 NMR Spectroscopy," Academic Press, New York (1972).
- (4) E. Wenkert, A.O. Clouse, D.W. Cochran and D. Doddrell, J. Amer. Chem. Soc. 91, 6879 (1969).
- (5) For a review, see B. C. Mayo, <u>Chem. Soc. Rev.</u> <u>2</u>, 49 (1973).
- (6) F.W. Wehrli, J.C.S. Chem. Comm. 663 (1975).
- (7) S. Katagiri, M. Kudö and N. Fukuoka, "Abstracts of the 7th Symposium on Structural Organic Chemistry (Tokyo)," 2A09 (1974).