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A number of naturally occurring quinones have been reported.‘tz In the course of our chemical studies 

of microbial quinone antibiotics,2 we have frequently encountered peri-hydroxy-p-naphthoquinone moieties. - 

Carbon-13 NMR spectroscopy3 promises to be a powerful tool for determining structures and studying bio- 

syntheses of this kind of antibiotic, if some fundamental 13C chemical-shift SC data on peri-hydroxy-p- 

naphthoquinones are available together with values for the methylation and acetylation shifts. 

We report here SC data for I ,4-naphthoquinone (3, vitamin KS (3, juglone (3, naphthazarin (6), and 

their methyl ethers and acetates &, a 7-g. The ‘% signals were assigned by using ‘H-noise,3 noise 

off-resonance,4 and single-frequency off-resonance3 decoupling techniques, with known chemical-shift 

rules including hydrogen bonding shift for a carbonyl group,3 by comparison of 6 
C 

values from compound 

to compound, and by employing an NMR shift reagent, 5 Yb(fod),, for 3 and 5 and deuteriation effect& of 

peri-OH by an addition of l&.0 for land z. Chemical-shift comparisons with those of o-hydroxyaceto- - 

R 0 phenone derivatives (12-14) were extremely useful, TABLE 1 summarizes the w- 

SC data thus obtained. The additivity of substituent chemical-shifts (see 

L: R = R’ = R” = H 

2: R=R’=,-,, R”=& 

;t: R = OH, R’ = R” = H 

$ R = OMe, R’ = R” = H 

$ R = OAc, R’ = R” = H 

Iz: R = R: = OH, R” = H 

Z: R = OMe, R’ = OH, R” = H 

8; R = R’ = OMe, R” = H 

2 R = OAc, R’ = OH, R” = H 

_I& R = R’ = OAc, R” = H 

x: R = OMe, R’ = OAc, R” = H 
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TABLE 1. ‘% Chemical Shift Data, 
a 8c 

1 184.6 184.9 190.0 184.0 184.0= 172.9 183.3 184.8 182.9 183.1 184.1 

2 138.5 147.8 138.4 136.2 137.2 134.6 136.4 138.4 137.5 138.5 137.2 

3 138.5 135.4 139.3 140.9 139.7 134.6 141 .7 138.4 140.6 138.5 139.5 

4 184.6 184.3 183.9 185.0 183.5’ 172.9 190.5 184.8 190.0 183.1 183.8 

5 126.2 125.8’ 118.9 118.3’ 124.9 172.9 156.6b 153.7 160.2b 147.6 142.7 

6 133.6 133.3 136.4 134.8 134.7 134.6 126.8 120.5 126.2 130.9 131 .o 

7 133.6 133.3 124.2 119.3c 129.6 134.6 123.6 120.5 133.3 130.9 119.3 

8 126.2 126.2’ 161 .2 159.9 149.2 172.9 154.0 153.7 142.9 147.6 157.8 

9 131.7 131 .9 114.8 120.3 123.3 fll.9 117.5’ 120.9 121 .8 124.4 120.4 

10 131.7 131.9 131 s 134.4 133.4 111.9 114.8= 120.9 114.8 124.4 124.5 

QMe 16.3(2-Me) 56.6 56.9 57.0 56.8 

CQMe 21 .o 21 .o 21 .o 21 .o 

CC& 169.2 169.4 169.2 169.9 - 

a Natural-abundance 13C FT NMR spectra were recorded on a Varian NV-14 FT NMR spectrometer at 

15.087 MHz using about 0.2-0.5 mmol cm-3 

internal TMS) are about +O.l . 
solutions in CDCI, and a-mm spinning tubes; errors of 6C (from 

FT measurement conditions are as follows: spectral width, 3923 Hz; pulse 

flipping angle, 8”; acquisition time, 0.6 set; number of data points, 4820. b An upfield shift of about 

-0.4 ppm was observed when &O was added to the CDCI, solution .* C These assignments may be reversed 

in each column. 

TABLE 2. 13C Substituent Chemical Shifts, AS in ppmf for l_ 

Subtituent 

a-OH 

8-QMe 

a-OAC 

C-l c-2 c-3 c-4 C-5 C-6 c-7 C-8 c-9 c-10 

+5.4 -0.1 +0.8 -0.7 -7.3 +2.a -9.4 +35 .o -16.9 -0.2 

+0.6 -2.3 +2.4 +0.4 -7.9= +1 .2 -14.3= +33.7 -11 .4 +2.7 

(-6.0 -2.2 +l .6 +1 .l -0.6= -1 .6 -4.9c -1 .3 +5.5 +2.5)b 

-0.6’ -1 .3 +1 .2 -1 .lC -1 .3 +1 .l -4.0 +23 .O -8.4 +1.7 

(-6.0c -1 .2 +0.4 -0.4= +6.0 -1 .7 +5.4 -12.0 +8.5 +1.9)b 

a Plus sign denotes a downfield shift. 
b 

Values in parentheses are the methylation or acetylation 

shifts _ C These values should be changed if the signal assignments are reversed. 

TABLE 2) holds fairly well except for &, where a delocalized-electronic structure is dominant.7 It should 

be noted that the shift reagent complexed preferentially to the 4-CO rather than the 1 -CO in 2. 

(1) 
(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

Some applications of the present results will b-e published later. 
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